Home
open import category-theory.category
open import category-theory.functor
module category-theory.category-of-functor-algebras
{o h} {𝒞 : Category o h} (F : Functor 𝒞 𝒞) where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.greater-h-levels
open import category-theory.displayed-category
open import category-theory.algebra-for-functor F
open Category 𝒞 hiding (𝒞)
private module F = Functor F
Alg : DisplayedCategory 𝒞 h h
Alg = record
{ 𝒟 = record
{ Ob = Algebra
; Hom = AlgebraHom
; id = idAlgebraHom
; _∘_ = compAlgebraHom
}
; is-displayed-category = record
{ identˡ = λ _ → is-set-hom _ _ _ _
; identʳ = λ _ → is-set-hom _ _ _ _
; ident² = λ _ → is-set-hom _ _ _ _
; assoc = is-set-hom _ _ _ _
; sym-assoc = is-set-hom _ _ _ _
; is-set-hom = isProp⇒isSet (is-set-hom _ _)
}
}