module foundations.bi-invertible-map where
open import foundations.universe open import foundations.sigma-type open import foundations.homotopy open import foundations.function open import foundations.product-type open import foundations.retraction open import foundations.section
private variable ℓ ℓ′ : Level biinv : ∀ {A : Type ℓ} {B : Type ℓ′} → (A → B) → Type (ℓ ⊔ ℓ′) biinv f = HasRetraction f × HasSection f
_≃_ : Type ℓ → Type ℓ′ → Type (ℓ ⊔ ℓ′) A ≃ B = Σ (A → B) biinv