Home

ホモトピーは自然同型である

module foundations.homotopies-are-natural-isomorphisms where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.groupoid-laws
open import foundations.identity-type-reasoning
open import foundations.functions-are-functors
open import foundations.homotopy
open import foundations.dependent-map
open import foundations.transport
open import foundations.function

fからgへのホモトピーは関手間の自然同型と見なせる。

private variable
   : Level
  A B : Type 
  f g : A  B

naturalityHtpy :  (H : f ~ g)
    {x y : A} (p : x  y)
   H x  ap g p  ap f p  H y
naturalityHtpy H refl = runitId (H _)  sym (lunitId (H _))

その特殊な場合:

htpyToId :  (H : f ~ idFunction A)
    (x : A)
   H (f x)  ap f (H x)
htpyToId {f = f} H x = rcancelId (H (f x)) (ap f (H x)) (H x) b
  where
    a : H (f x)  ap (idFunction _) (H x)  ap f (H x)  H x
    a = naturalityHtpy H (H x)

    b : H (f x)  H x  ap f (H x)  H x
    b = ap (H (f x) ∙_) (sym (apId (H x)))  a

依存積バージョン:

private variable
  P : A  Type 
  f′ g′ : (a : A)  P a

naturalityHtpyD :  (H : f′ ~ g′)
    {x y : A} (p : x  y)
   ap (subst P p) (H x)  apd g′ p  apd f′ p  H y
naturalityHtpyD {P = P} H {x = x} refl =
  (runitId _  apId (H x))  sym (lunitId (H _))