Home
module foundations.transport-identity where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.transport
open import foundations.groupoid-laws
open import foundations.identity-type-reasoning
private variable
ℓ : Level
A B : Type ℓ
x x′ y y′ : A
substDom : ∀ (p : x = x′) (q : x = y)
→ subst (_= y) p q = sym p ∙ q
substDom refl q = sym (lelimId (sym refl) q symRefl)
substCod : ∀ (p : y = y′) (q : x = y)
→ subst (x =_) p q = q ∙ p
substCod refl q = sym (runitId q)
substBoth : ∀ (p : x = x′) (q : x = x)
→ subst (λ w → w = w) p q = sym p ∙ (q ∙ p)
substBoth refl q = sym (lelimId _ _ symRefl ∙ runitId q)