module foundations.sigma-type-identity where
open import foundations.universe open import foundations.identity-type open import foundations.sigma-type open import foundations.transport open import foundations.bi-invertible-map open import foundations.quasi-inverse-to-bi-invertible-map open import foundations.function open import foundations.homotopy
private variable ℓ : Level A : Type ℓ B : A → Type ℓ module _ {v w : Σ A B} where fromΣId : v = w → Σ[ q ∈ fst v = fst w ] (subst B q (snd v) = snd w) fromΣId refl = refl , refl
この関数fromΣId
は同値である:
ΣId : biinv fromΣId ΣId = QuasiInv⇒biinv (record { g = λ {(refl , refl) → refl} ; linv = λ {refl → refl} ; rinv = λ {(refl , refl) → refl} }) toΣId : Σ[ q ∈ fst v = fst w ] (subst B q (snd v) = snd w) → v = w toΣId = ΣId .fst .fst