Home
module foundations.sigma-type-snd-contr where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.sigma-type
open import foundations.contractible-type
open import foundations.bi-invertible-map
open import foundations.quasi-inverse-to-bi-invertible-map
open import foundations.function
open import foundations.homotopy
open import foundations.sigma-type-identity
private variable
ℓ : Level
A : Type ℓ
B : A → Type ℓ
module _ (f : ∀ (a : A) → isContr (B a)) where
ΣSndContr : biinv {A = Σ A B} fst
ΣSndContr = QuasiInv⇒biinv record
{ g = λ x → x , f x .fst
; linv = λ {(a , b) → toΣId (refl , f a .snd b)}
; rinv = λ _ → refl
}