Home

第2成分の型が可縮であるような依存和型

module foundations.sigma-type-snd-contr where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.sigma-type
open import foundations.contractible-type
open import foundations.bi-invertible-map
open import foundations.quasi-inverse-to-bi-invertible-map
open import foundations.function
open import foundations.homotopy
open import foundations.sigma-type-identity
private variable
   : Level
  A : Type 
  B : A  Type 

module _ (f :  (a : A)  isContr (B a)) where
  ΣSndContr : biinv {A = Σ A B} fst
  ΣSndContr = QuasiInv⇒biinv record
    { g = λ x  x , f x .fst
    ; linv = λ {(a , b)  toΣId (refl , f a .snd b)}
    ; rinv = λ _  refl
    }