Home
module foundations.sigma-type-identity-snd-prop where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.sigma-type
open import foundations.sigma-type-identity
open import foundations.sigma-type-snd-contr
open import foundations.proposition
open import foundations.transport
open import foundations.bi-invertible-map
open import foundations.equivalence-is-equivalence-relation
open import foundations.prop-id-contr
private variable ℓ ℓ′ : Level
module _ {A : Type ℓ} {B : A → Type ℓ′}
(isPropB : ∀ a → isProp (B a))
{v w : Σ A B} where
ΣIdSndProp≃ : (v = w) ≃ (fst v = fst w)
ΣIdSndProp≃ =
trans≃
(fromΣId , ΣId)
(fst , ΣSndContr λ _ → isProp⇒isContrId (isPropB _))
ΣIdSndProp : biinv (λ (p : v = w) → fromΣId p .fst)
ΣIdSndProp = ΣIdSndProp≃ .snd
toΣIdSndProp : fst v = fst w → v = w
toΣIdSndProp = sym≃ ΣIdSndProp≃ .fst