Home

「第2成分の型が命題であるような依存和型」の要素の同一視

module foundations.sigma-type-identity-snd-prop where
Imports
open import foundations.universe
open import foundations.identity-type
open import foundations.sigma-type
open import foundations.sigma-type-identity
open import foundations.sigma-type-snd-contr
open import foundations.proposition
open import foundations.transport
open import foundations.bi-invertible-map
open import foundations.equivalence-is-equivalence-relation
open import foundations.prop-id-contr
private variable  ℓ′ : Level

module _ {A : Type } {B : A  Type ℓ′}
  (isPropB :  a  isProp (B a))
  {v w : Σ A B} where
  ΣIdSndProp≃ : (v  w)  (fst v  fst w)
  ΣIdSndProp≃ =
    trans≃
      (fromΣId , ΣId)
      (fst , ΣSndContr λ _  isProp⇒isContrId (isPropB _))

  ΣIdSndProp : biinv  (p : v  w)  fromΣId p .fst)
  ΣIdSndProp = ΣIdSndProp≃ .snd

  toΣIdSndProp : fst v  fst w  v  w
  toΣIdSndProp = sym≃ ΣIdSndProp≃ .fst